Applied Analysis by John Hunter and Bruno Nachtergaele

Applied Analysis by John Hunter and Bruno Nachtergaele

Chapter 1: Metric and Normed Spaces (1–34)
Chapter 2: Continuous Functions (35–60)
Chapter 3: The Contraction Mapping Theorem (61–79)
Chapter 4: Topological Spaces (81–89)
Chapter 5: Banach Spaces (91–123)
Chapter 6: Hilbert Spaces (125–147)
Chapter 7: Fourier Series (149–186)
Chapter 8: Bounded Linear Operators on a Hilbert Space (187–214)
Chapter 9: The Spectrum of Bounded Linear Operators (215–243)
Chapter 10: Linear Differential Operators and Green’s Functions (245–286)
Chapter 11: Distributions and the Fourier Transform (287–333)
Chapter 12: Measure Theory and Function Spaces (335–377)
Chapter 13: Differential Calculus and Variational Methods (379–426)

References (427–429)

 

One Response to “Applied Analysis by John Hunter and Bruno Nachtergaele”


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: